38

تخفیف

شناسایی شی با روش deep learning با پایتون

دسته: , برچسب: , , , , , , تاریخ انتشار: 13 آذر 1400تعداد بازدید: 74
قیمت محصول

50,000 تومان

جزئیات بیشتر

حجم

341KB

زبان برنامه نویسی

python

قوانین استفاده

خرید محصول توسط کلیه کارت های شتاب امکان پذیر است و بلافاصله پس از خرید، لینک دانلود محصول در اختیار شما قرار خواهد گرفت و هر گونه فروش در سایت های دیگر قابل پیگیری خواهد بود.

  • دسترسی به فایل محصول به صورت مادام‌العمر
  • ۶ ماه پشتیبانی کاملا رایگان و تضمین شده
توضیحات مختصر محصول
شناسایی شی با روش deep learning با پایتون

شناسایی شی با روش deep learning با پایتون


یادگیری عمیق چیست؟

یادگیری عمیق (Deep Learning) بخشی از روش‌های یادگیری ماشین است که بر روش‌هایی تمرکز دارد که مبتنی بر شبکه‌های عصبی مصنوعی (Artificial neural network) هستند. یادگیری عمیق به رایانه‌ها می‌آموزد آنچه را که به طور طبیعی برای انسان انجام می‌شود، انجام دهند.

شناسایی شی به روش deep learning در پایتون

پاسخ دیگر به سوال یادگیری عمیق چیست، می‌تواند این باشد که یادگیری عمیق زیرمجموعه‌ای از یادگیری ماشین است که در آن از الگوریتم‌هایی استفاده می‌شود که مغز انسان را شبیه سازی می‌کند. این الگوریتم شبکه‌های عصبی مصنوعی نام دارند. شبکه‌های عصبی مصنوعی از پردازش اطلاعات و گره‌های ارتباطی توزیع شده در سیستم‌های بیولوژیکی الهام گرفته‌اند. می‌توان گفت شبکه‌های عصبی تمایل به حالت ایستا و نمادین دارند.

تاریخچه یادگیری عمیق چیست؟

مفهوم یادگیری عمیق به زبان ساده، برای اولین بار در سال ۱۹۸۰ به صورت یک استدلال نظری ارائه شد. اما این مفهوم به دو دلیل عمده، اکنون بیش از گذشته مورد توجه قرار گرفته و مفید واقع شده است. این دلایل عبارتند از:Deep Learning به تعداد زیادی از داده‌ها نیازمند است. به عنوان مثال، برای توسعه خودروهای خودران، میلیون‌ها تصویر و هزاران ساعت ویدئو مورد نیاز است.

یادگیری عمیق به قدرت پردازشی بالایی نیاز دارد. واحدهای پردازنده گرافیکی قدرتمندی که در Deep Learning استفاده می‌شوند، هزینه زیادی دارند. در صورتی که این پردازنده‌ها با سیستم رایانش ابری همگام شوند، تیم‌های توسعه می‌توانند زمان آموزش یک شبکه یادگیری عمیق را از چند هفته‌ به چند ساعت‌ یا حتی کمتر کاهش دهند.

چرا یادگیری عمیق اهمیت دارد؟

تا اینجا دانستیم یادگیری عمیق چیست و از چه زمانی این مفهوم مطرح شد. در این بخش دلیل اهمیت Deep Learning را بررسی خواهیم کرد.

امروزه یادگیری عمیق به سطح بسیار بالایی از دقت در تشخیص دست پیدا کرده است. این سطح از دقت به وسایل الکترونیکی کمک می‌کند که پاسخگوی انتظارات کاربران باشند. همچنین این سطح دقت، در کاربردهای با حساسیت بالا مانند خودروهای خودران اهمیت زیادی دارد. پیشرفت‌های اخیر در یادگیری عمیق به سطحی رسیده که در کارهایی مانند دسته‌بندی تصاویر، بهتر از انسان عمل می‌کند.

کاربردهای یادگیری عمیق چیست؟

کاربرد برنامه‌های یادگیری عمیق در صنایع مختلف بسیار گسترده است و از رانندگی اتوماتیک تا وسایل پزشکی را شامل می‌شود. در این بخش برخی از کاربردهای Deep Learning را بررسی خواهیم کرد.

کاربرد در رانندگی خودکار:

محققان خودروسازی امروزه در حال استفاده از یادگیری عمیق برای شناسایی اشیایی مانند تابلوها و چراغ‌های راهنمایی هستند. همچنین یادگیری عمیق در تشخیص عابران پیاده نیز کاربرد دارد و به این ترتیب به کاهش تصادفات رانندگی کمک می‌کند.

کاربرد در صنایع هوایی و نظامی:

سیستم یادگیری عمیق با امکان آنالیز تصاویر ماهواره‌ای می‌تواند نقاط امن و ناامن را برای سربازان شناسایی کند.

کاربرد یادگیری عمیق در ترجمه:

الگوریتم‌های یادگیری عمیق قادر هستند زبان‌های مختلف را به یکدیگر ترجمه کنند. این قابلیت برای مسافران، تاجران و… بسار سودمند و مفید است.

کاربرد در چت بات:

Chatbot ها به دلیل بهره مندی از تکنولوژی یادگیری عمیق می‌توانند نوعی پشتیبانی کارآمد و سودمند ارائه دهند. در بسیاری از شرکت‌ها از چت بات‌های مبتنی بر هوش مصنوعی برای ارائه خدمات پشتیبانی آنلاین برای کاربران استفاده می‌شود.

کاربرد یادگیری عمیق در پزشکی:

محققان علم پزشکی از سیستم یادگیری عمیق برای انواع تحقیقات از جمله تشخیص خودکار سلول‌های سرطانی استفاده می‌کنند. دانشگاه کالیفرنیا موفق به ساخت میکروسکوپ پیشرفته‌ای شده که داده‌هایی با بعد بالا تولید می‌کند. از این داده‌ها برای آموزش مدل‌های یادگیری عمیق در تشخیص دقیق سلول‌های سرطانی استفاده می‌شود.

کاربرد در رنگی کردن تصاویر سیاه و سفید:

امروزه سیستم یادگیری عمیق می‌تواند تصاویر سیاه و سفید را با توجه به وسایل موجود در آن رنگ‌آمیزی کرده و به این ترتیب تصاویررنگی کامل و دقیق تولید کند. لازم به ذکر است که فرایند تبدیل عکس‌های سیاه و سفید به عکس‌های رنگی در گذشته به صورت دستی و با دقت پایینی انجام می‌شد.

کاربرد در دستیارهای مجازی:

دستیارهای مجازی همانند الکسا، Cortana و… از الگوریتم یادگیری عمیق برای پردازش زبان طبیعی و برقراری ارتباط با انسان‌ها استفاده می‌کنند.

کاربرد یادگیری عمیق در تشخیص چهره:

چالش مهم در تکنولوژی تشخیص چهره این است که بتوانیم یک فرد را در شرایط مختلف، مثلا با مدل موی متفاوت، با عینک یا بدون عینک، شرایط نوری ضعیف و… شناسایی کنیم از این قابلیت هم در موارد امنیتی و هم در کاربردهایی مانند تگ کردن افراد در تصاویر فیسبوک استفاده می‌شود. همچنین از تکنولوژی تشخیص چهره می‌توان در پرداخت وجوه در فروشگاه‌ها نیز استفاده کرد.

توضیحات پروژه :

ماژول OpenCV از مدل های آموزش عمیق از پیش آموزش دیده در چارچوب های محبوب مانند Caffe، Torch و TensorFlow پشتیبانی می کند.

سورس کد در سیستم عامل لینوکس تست شده

وقتی صحبت از تشخیص اشیا می شود، چارچوب های تشخیص محبوب عبارتند از:

  • YOLO
  • SSD
  • Faster R-CNN

 

کتابخانه های پیشنیاز:

  • OPENCV
  • Numpy

برای نصب کتابخانه numpy  و OPENCV کد زیر را در محیط cmd ویندوز تایپ و اجرا میکنیم.

pip install numpy opencv-python


تصویر خروجی حاصل از اجرا دستور بالا:

 

شناسایی شی با روش deep learning با پایتون

نمایش بیشتر
دیدگاه های کاربران
دیدگاهتان را با ما درمیان بگذارید
تعداد دیدگاه : 0 امتیاز کلی : 0.0 توصیه خرید : 0 نفر
بر اساس 0 خرید
0
0
0
0
0

هیچ دیدگاهی برای این محصول نوشته نشده است.

لطفا پیش از ارسال نظر، خلاصه قوانین زیر را مطالعه کنید:   فارسی بنویسید و از کیبورد فارسی استفاده کنید. بهتر است از فضای خالی (Space) بیش از حدِ معمول، شکلک یا ایموجی استفاده نکنید و از کشیدن حروف یا کلمات با صفحه کلید بپرهیزید.   نظرات خود را براساس تجربه و استفاده ی عملی و با دقت به نکات فنی ارسال کنید، بدون تعصب به محصول خاص، مزایا و معایب را بازگو کنید و بهتر است از ارسال نظرات چندکلمه ای خودداری کنید.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “شناسایی شی با روش deep learning با پایتون”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

قیمت محصول

50,000 تومان